Smart Fertilizer is now i-Plant Nutrition
Learn More
Less popular does not mean less important: chlorophylls and carotenoids

It is well known that chlorophylls, associated with the green colour of leaves, are key components of photosynthesis and therefore essential for plant physiology. However, they are not the only key pigments for plant survival. Less popular than chlorophylls, but still essential, carotenoids are a family of pigments that exhibit a range of colours and functions and can be found in different organs including roots (e.g., carrots), fruits (e.g., tomatoes) and leaves.

In plants, carotenoids are involved in several fundamental processes. In photosynthesis, carotenoids can absorb light wavelengths that chlorophylls are not able to absorb (around 500 nm). Thus, carotenoids increase the spectrum absorption during photosynthesis working as accessory pigments. Moreover, due to their physicochemical properties, carotenoids can disperse the excess of energy produced during photosynthesis, exhibiting a photoprotective role during this essential process.

The biosynthetic pathways of chlorophylls and carotenoids share some molecules. This means that their production is interconnected, and their abundance can influence each other under certain circumstances.

Moreover, carotenoids are precursors of plant hormones including Abscisic Acid (ABA) and strigolactones. ABA is a well-established key player in abiotic stress resistance, seed dormancy and organ size. On the other hand, strigolactones have been less studied, but they have been described as involved in the control of plant development (e.g branching) and facilitating the growth of arbuscular mycorrhizal fungi in the soil. Carotenoids are also relevant in some flowers, playing a role in attracting seed-dispersing organisms.

Overall, carotenoids have been associated with a wide range of biological functions, crucial for plant physiology and normal plant development.

Since chlorophylls and carotenoids participate in essential physiological functions, these pigments can be used as indicators for plant health. Reduced levels of chlorophylls and/or carotenoids are normally a consequence of a nutritional deficiency and/or stress exposure. Deficiencies of macronutrients (e.g. nitrogen), micronutrients (e.g. Fe, Mg or Zn), waterlogged roots or pathogen infection, are examples of causes for a reduction in chlorophyll level. This results in leaves exhibiting a yellowish colour. Moreover, plants with reduced levels of carotenoids will be sensitive to abiotic stimuli such as drought and light exposure. Severe reductions in these pigments could be ultimately lethal for the plant.

A reduction in both chlorophylls and/or carotenoids will have a negative impact on the plant development, and a concomitant reduction in yield. Therefore, maintaining these levels within the normal range has to be a priority in order to ensure and maximize production. Monitoring levels of these pigments represent a powerful agricultural tool to identify problems in plants and amend any deficiencies and/or stress in time to reduce the negative effects.
Latest articles How to grow melon Types of irrigation systems Genetic improvement of tomato plants The importance of fallow periods for soybeans How to grow oranges How to grow plums How to grow lemons How to grow strawberries How to grow raspberries Climate change impacts on global agriculture Citrus pests, diseases and disorders berries pests, diseases and disorders Plums pests and diseases Leaf vegetable pests and diseases Dealing with gray mold What to consider when writing an agricultural prescription Acidic Fertilizers Boron Fertilizer Calcium Fertilizer Less popular does not mean less important: chlorophylls and carotenoids Coffee Field Spacing Corn Pests Dry beans pests Fertigation Foliar Fertilization Garlic pests and diseases Gypsum in Agriculture How soil characteristics affect irrigation HOW TO CORRECTLY COLLECT SOIL SAMPLES How to grow garlic Learn More About How To Grow Passion Fruit How To Grow Rapeseed How to grow soybean How to Get Rid Of The Sugarcane Borer Integrated Pest Management In Leaf Vegetables Key coffee pests Nuntrient Path: From Fertilizer To The Leaves Orchid Fertilizer Overwatering your crops Photoperiodism Relative Humidity Remote Sensing In Agricultural Soil characteristics and their relation with micronutrients availability Soybean pests and diseases Sub-irrigation in Greenhouses The Number One Disease Of Cash Crops Types of fertilization Using analyts and catholyte in agriculture Visual diagnosis of nutrient deficiency Ways of nitrogen fixation What You Need To Know About Dry Beans Wheat: Pests, Diseases and Disorders Using an app to use resources more efficiently Five things you must know about using urea fertilizers
Sign In